## ORGANOSILICON COMPOUNDS OF THE FURAN SERIES, V\*. FURYLORGANYLSILANES

## E. Ya Lukevits, M. G. Voronkov

Khimiya geterotsiklicheskikh soedineii, Vol. 1, No. 1, pp. 31-35, 1965

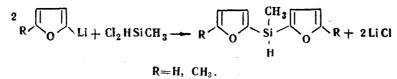
Twelve new furylorganylsilanes and furfurylorganylsilanes are synthesized by reacting 2-furyllithium, 5methyl-2-furyllithium, and 5-trimethylsilyl-2-furyllithium with organylchlorosilanes, organylchlorohydrosilanes, chloromethyltriorganylsilanes, and silicon tetrachloride.

 $\beta$ -(2-furyl)ethyltrimethylsilane and 1-furyl-2-trimethylsilylethanol-1, which were previously unknown, are synthesized by reacting trimethylsilylmethyl magnesium chloride with furfuryl chloride and furfural, respectively.

The organosilicon derivatives of furan, with a silyl group attached to the furan ring either directly or through a carbon atom, have been little investigated. Only isolated representatives of compounds of this type are known, furyltrimethylsilane [2, 3], certain analogs, and 2-trimethylsilylethyl-3-carboethoxy-5-methylfuran [5]. Nor are there any convenient methods of synthesizing furylsilanes (reaction of chlorosilanes with furylmercurichloride [6] and hydrosilylation of furan with diphenylsilane [7] do not give positive results).

The present paper describes organolithium and organomagnesium synthesis of furylorganylsilanes, with 1-4 furyl groups joined to the central silicon atom, as well as furfurylsilanes, where the silyl group is separated from the heterocyclic ring by a methylene group, and  $\beta$ -(2-furyl)ethylsilanes with two methylene groups between the silicon atom and the furan ring.

2-Furyllithium reacts with organylchlorosilanes and  $SiCl_4$  to give furylsilanes:


$$n \bigcup_{0} Li + Cl_n SiR_{4-n} \longrightarrow (\bigcup_{0})_n SiR_{4-n} + n LiCl$$

 $R = CH_3$ ,  $C_2H_5$ ,  $C_6H_5$ ; n = 1 - 4.

5-Methyl-2-furyllithium reacts similarly with chlorosilanes.

Reaction is readily brought about by adding a solution of the chlorosilane in tetrahydrofuran to a solution of furyllithium in the same solvent cooled to  $0^{\circ}$ . After separating the lithium chloride, the liquid furylsilanes are separated by vacuum distillation, and the solid ones by recrystallization from heptane. Reaction product yields are 40-85% of the theoretical.

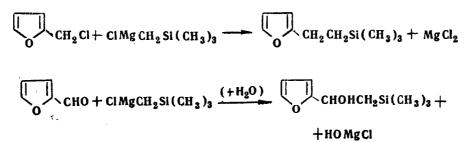
When organylhydrochlorosilanes are reacted with organolithium compounds, substitution by an organic radical usually takes place at the Si-H bond. However, a more than 40% yield of difurylmethylsilane can be obtained, along with trifurylmethylsilane, by adding a solution of furyllithium to methyldichlorosilane while cooling to  $-10^{\circ}$  to  $-15^{\circ}$ , the equation being



Bis-(5-methyl-2-furyl)methylsilane was also obtained in 41.8% yield in accordance with the above equation. This compound reduces mercuric chloride (in pyridine) to mercury, which is characteristic of hydrosilanes [8]. It also reacts with water in tetrahydrofuran or dioxan in the presence of chloroplatinic acid, being converted to the corresponding silanol [9, 10] with evolution of hydrogen. The IR spectrum, which has an intense band  $\nu_{Si-H}$  at 2155 cm<sup>-1</sup>, also confirms the presence of an Si-H bond.

2-Furyltrialkylsilanes are metalized by butyllithium in tetrahydrofuran. Reaction of the lithium derivative of 2furyl-trimethylsilane with trimethylchlorosilane gives the first organosilicon furan derivative, with two silyl groups in the furan ring:

$$(CH_3)_3$$
 Si  $\bigcirc$  Li + CI SI  $(CH_3)_3$   $\longrightarrow$   $(CH_3)_3$  Si  $\bigcirc$  Si  $(CH_3)_3$  + Li CI


\*For Part IV see [1].

Furfuryltriethylsilane is obtained by reacting furyllithium with chloromethyltriethylsilane:

$$[ I ] CH_2 Si (C_2 H_5)_3 - CH_2 Si (C_2 H_5)_3 + Li CI$$

Reaction is slow, and prolonged heating is necessary.

 $\beta$ -(2-Furyl)ethylsilane is prepared by a Grignard reaction. Furfuryl chloride and furfural react energetically with trimethylsilylmethylmagnesium chloride to give  $\beta$ -(2-furyl)ethyltrimethylsilane and 1-furyl-2-trimethylsilylethanol-1, respectively:



1-Furyl-2-trimethylsilylethanol-1 smoothly forms a phenylurethane, but on dehydration with oxalic acid it suffers  $\beta$ -decomposition:

$$\bigcup_{O} CHOHCH_2 Si(CH_3)_3 \longrightarrow \bigcup_{O} CH=CH_2 + (CH_3)_3 SiOH$$

Physical constants, yields, and analytical data for all furylorganylsilanes synthesized are given in the table.

## EXPERIMENTAL

2-Furyltriphenylsilane. A one-liter 4-necked round bottomed flask is fitted with a mechanical stirrer (gastight seal), a dropping funnel, a reflux condenser (protected against atmospheric moisture), a gas inlet tube for passing nitrogen, and a thermometer. 7.0 g (1 g-at) of finely cut lithium and 150 ml dry tetrahydrofuran are introduced. The reaction mixture is cooled to about  $-30^{\circ}$ , and about 10 ml of a solution of 46.3 g (0.5 mole) n-butyl chloride in 50 ml tetrahydrofuran is added. The rest of the n-butyl chloride is added dropwise with vigorous stirring and reaction begins, the temperature being held at  $-20^{\circ}$  to  $-25^{\circ}$ . After all the butyl chloride has been added, the reaction mixture is gradually heated to 10°, and stirring continued until all the lithium has completely dissolved. 37.4 g (0.55 mole) furan are added to the resultant solution of n-butyllithium, which is held at about  $-20^{\circ}$ . The temperature is slowly raised to 15°, and stirring continued until a negative test for butyllithium is obtained [12]. The resultant solution of furyllithium is cooled with ice water, and 94.3 g (0.32 mole) triphenylchlorosilane in 180 ml tetrahydrofuran are added. The mixture is left overnight at room temperature, and then decomposed with 120 ml water. The organic layer is separated off, and the aqueous layer extracted with a small amount of ether. The tetrahydrofuran solution is united with the ether extract, and the whole dried with magnesium sulfate. The solvent is distilled off, and the residue recrystallized from heptane. Yield 88.8 g (85%). White needles m. p. 158-158.5°.

Tetrafurylsilane is similarly synthesized from 2-furyllithium and SiCl<sub>4</sub>.

<u>Di(2-furyl)dimethylsilane</u>. A solution of 12.9 g (0.1 mole) dimethyldichlorosilane in 20 ml tetrahydrofuran is slowly added, with stirring, to a solution of 0.21 mole 2-furyllithium in 100 ml tetrahydrofuran cooled to 0°. Next day the reaction mixture is decomposed with water, the tetrahydrofuran layer separated off, and dried with magnesium sulfate. The residue after distilling off the solvent is distilled in a vacuum. Yield 8.6 g (44.7%) b.p. 69-70° (2 mm).

2-Furyltrimethylsilane, 2-furyltriethylsilane, tri(2-furyl)methylsilane, 5-methyl-2-furyltriethylsilane, and 2,5bis-(trimethylsilyl)furan are prepared similarly. In reacting furyllithium with chloromethyltriethylsilane, the reaction mixture is boiled for 48 hrs.

Reaction of 2-furyllithium with methyldichlorosilane. A solution of 23.0 g (0.2 mole) methyldichlorosilane in 30 ml tetrahydrofuran is cooled to about  $-15^{\circ}$ , and a 1.2 M solution of furyllithium in tetrahydrofuran is slowly added until the reaction is neutral. After decomposing with water, the solvent is distilled off, and the residue distilled in a vacuum. Yield 15.4 g (43.2%) di(2-furyl)methylsilane b.p.  $67^{\circ}$  (4 mm) and 9.7 g tri(2-furyl)methylsilane b.p.  $128^{\circ}$  (4 mm).

Bis-(5-methyl-2-furyl)methylsilane is obtained in a similar way.

<u> $\beta$ -(2-Furyl)ethyltrimethylsilane</u>. A solution of 17.5 g (0.15 mole) furfuryl chloride in 25 ml dry ether is added to an ethereal solution of trimethylsilylmethyl magnesium chloride prepared from 4.8 g ( $\tilde{0.2}$  g-at) magnesium and 25.0 g ( $\sim 0.2$  mole) chloromethyltrimethylsilane, cooled in ice and vigorously stirred. Next day the reaction mixture is de-

Furylorganylsilanes

| Yield                                                                                                                                                                                                                     | 0/0                                                       | 57.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.7                                                    | 33.4                                                    | 30                                                      | 58.1                                                    | 85                                                      | 26.4                                                              | 37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52                                                      | 41.8                                                    | 31.1                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|
| Si, %                                                                                                                                                                                                                     | Calcu-<br>lated                                           | 20.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.60                                                   | 11.49                                                   | 9.48                                                    | 15.41                                                   | 8.60                                                    | 14.30                                                             | 16.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.30                                                   | 13.22                                                   | 26.44                                                                   |
|                                                                                                                                                                                                                           | Found                                                     | 19.95; 19.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15,55; 15.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.52; 14.59                                            | 11.08; 11.19                                            | 9.58; 9.64                                              | 15.36; 15.30                                            | 8.71; 8.83                                              | 13.92; 13.98                                                      | 16.60; 16.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.01; 15.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.09; 14.17                                            | 12.94; 13.03                                            | 26.32; 26.39                                                            |
| Empirical<br>formula                                                                                                                                                                                                      |                                                           | C <sub>7</sub> H <sub>12</sub> OSi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C9H10O2Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <sub>10</sub> H <sub>12</sub> O <sub>2</sub> Si       | C <sub>13</sub> H <sub>12</sub> O <sub>3</sub> Si       | C <sub>16</sub> H <sub>12</sub> O <sub>4</sub> Si       | C <sub>10</sub> H <sub>18</sub> OSi                     | C <sub>22</sub> H <sub>18</sub> OSi                     | C <sub>11</sub> H <sub>20</sub> OSi                               | C <sub>9</sub> H <sub>16</sub> OSi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>9</sub> H <sub>16</sub> O <sub>2</sub> Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>11</sub> H <sub>20</sub> OSi                     | C <sub>11</sub> H <sub>14</sub> O <sub>2</sub> Si       | C <sub>10</sub> H <sub>20</sub> OSi <sub>2</sub>                        |
| Ş                                                                                                                                                                                                                         | Calcu-<br>lated                                           | 42.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.46                                                   | 68.05                                                   |                                                         | 56.40                                                   |                                                         | 61.03                                                             | 52,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.03                                                   | 60.35                                                   | 66.38 66.39                                                             |
| W                                                                                                                                                                                                                         | Found                                                     | 42.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.02                                                   | 67.52                                                   |                                                         | 56,27                                                   |                                                         | 60.32                                                             | 52.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60.80                                                   | 59.58                                                   |                                                                         |
| a4 <sup>2</sup> 0                                                                                                                                                                                                         |                                                           | 0.8764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0316                                                  | 1.1251                                                  |                                                         | 0.8988                                                  |                                                         | 0.8948                                                            | 0.8821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8924                                                  | 1.0203                                                  | 0.8558                                                                  |
| . 20                                                                                                                                                                                                                      | $n_D^{20}$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5020                                                  | 1.5342                                                  |                                                         | 1.4668                                                  |                                                         | 1.4618                                                            | 1.4590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4647                                                  | 1.5010                                                  | 1.4474                                                                  |
| $\mathbf{R} = \begin{bmatrix} \mathbf{R} \\ \mathbf{O} \end{bmatrix};  \mathbf{R}' = C\mathbf{H}_3^{2} \begin{bmatrix} \mathbf{R} \\ \mathbf{O} \end{bmatrix};$<br>(pressure, mm) $\mathbf{R}_D^{20} = \mathbf{a}_4^{20}$ |                                                           | 125—126 (760)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6970 (2)                                                | 128 (4)                                                 | m. p. 92.5—93.5                                         | 55 (2.5)                                                | m. p. 158—158.5                                         | 58—60 (2)                                                         | 80 (26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75—76 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68 (3)                                                  | 84.5 (3)                                                | 64 (7)                                                                  |
| Compound                                                                                                                                                                                                                  |                                                           | RSi(CH <sub>3</sub> ) <sub>3</sub> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R <sub>2</sub> SiHCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $R_2Si(CH_3)_2$                                         | R <sub>s</sub> SiCH <sub>s</sub>                        | R4Si                                                    | RSi(C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub>        | RSi (C <sub>6</sub> H <sub>5</sub> ) 3                  | RCH <sub>2</sub> Si (C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub> | RCH <sub>2</sub> CH <sub>2</sub> Si (CH <sub>3</sub> ) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RCHOHCH <sub>2</sub> Si(CH <sub>3</sub> ) <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R'Si(C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub>       | R' <sub>2</sub> SiHCH <sub>3</sub>                      | (CH <sub>3</sub> ) <sub>3</sub> SiR''Si (CH <sub>3</sub> ) <sub>3</sub> |
|                                                                                                                                                                                                                           | B.D. <sup>•</sup> C 20 A <sup>20</sup> MRD Fmnirical Si % | B. p., $^{\circ}C$<br>(pressure, mm) $n_D^{20}$ $a_4^{20}$ $m_R^{20}$ $a_4^{20}$ Empirical $n_R^{20}$ $a_4^{20}$ $n_R^{20}$ $a_4^{20}$ $n_R^{20}$ $a_4^{20}$ $n_R^{20}$ $a_4^{20}$ $n_R^{20}$ $a_4^{20}$ $n_R^{20}$ $n_$ | pound     B. p., $^{\circ}C$ $n_D^{20}$ $a_4^{20}$ $m_R^{20}$ <td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td> <td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td> <td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td> <td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td>CompoundB. p. , <math>{}^{\bullet}C</math><math>{}^{20}</math><math>{}^{4}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math><math>{}^{6}</math></td> <td>CompoundB. p. , <math>{}^{\bullet}C</math><math>{}^{20}</math><math>{}^{20}</math><math>{}^{R_{BD}}</math>EmpiricalSi. <math>{}^{6}</math>CH3)3*(pressure, mm)<math>{}^{20}</math><math>{}^{20}</math><math>{}^{20}</math>EmpiricalSi. <math>{}^{6}</math>CH3)3*(pressure, mm)<math>{}^{20}</math><math>{}^{20}</math><math>{}^{20}</math>EmpiricalSi. <math>{}^{6}</math>CH3,3*(pressure, mm)<math>{}^{20}</math><math>{}^{20}</math><math>{}^{20}</math><math>{}^{20}</math>EmpiricalSi. <math>{}^{6}</math>CH3,3*(pressure, mm)<math>{}^{20}</math><math>{}^{20}</math><math>{}^{20}</math><math>{}^{20}</math><math>{}^{20}</math><math>{}^{21}</math>CH3,*(pressure, mm)<math>{}^{20}</math><math>{}^{21}</math><math>{}^{20}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math>CH3,*(pressure, mm)<math>{}^{20}</math><math>{}^{21}</math><math>{}^{20}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math>CH3,*(pressure, mm)<math>{}^{20}</math><math>{}^{21}</math><math>{}^{20}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math>CH3,*(pressure, mm)<math>{}^{20}</math><math>{}^{21}</math><math>{}^{20}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math>CH3,*(pressure, mm)<math>{}^{21}</math><math>{}^{20}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math>CH3,*(pressure, mm)<math>{}^{21}</math><math>{}^{20}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math>CH3,*(pressure, mm)<math>{}^{21}</math><math>{}^{20}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math>CH3,*(pressure, mm)<math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math><math>{}^{21}</math>CH3,*(pressure, mm)<math>{}^{21}</math></td> <td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td></td> | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $           | CompoundB. p. , ${}^{\bullet}C$ ${}^{20}$ ${}^{4}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ ${}^{6}$ | CompoundB. p. , ${}^{\bullet}C$ ${}^{20}$ ${}^{20}$ ${}^{R_{BD}}$ EmpiricalSi. ${}^{6}$ CH3)3*(pressure, mm) ${}^{20}$ ${}^{20}$ ${}^{20}$ EmpiricalSi. ${}^{6}$ CH3)3*(pressure, mm) ${}^{20}$ ${}^{20}$ ${}^{20}$ EmpiricalSi. ${}^{6}$ CH3,3*(pressure, mm) ${}^{20}$ ${}^{20}$ ${}^{20}$ ${}^{20}$ EmpiricalSi. ${}^{6}$ CH3,3*(pressure, mm) ${}^{20}$ ${}^{20}$ ${}^{20}$ ${}^{20}$ ${}^{20}$ ${}^{21}$ CH3,*(pressure, mm) ${}^{20}$ ${}^{21}$ ${}^{20}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ CH3,*(pressure, mm) ${}^{21}$ ${}^{20}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ CH3,*(pressure, mm) ${}^{21}$ ${}^{20}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ CH3,*(pressure, mm) ${}^{21}$ ${}^{20}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ CH3,*(pressure, mm) ${}^{21}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ ${}^{21}$ CH3,*(pressure, mm) ${}^{21}$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |                                                                         |

\*Literature data [2]: b. p. 124-125(750);  $n_D^{20}$  1.4470;  $d_D^{20}$  0.880.

composed with a solution of ammonium chloride. The ether layer is separated off, dried over magnesium sulfate, the solvent distilled off, and the residue distilled in a vacuum to give 9.4 g (37.2%)  $\beta$ -(2-furyl)ethyltrimethylsilane, b. p. 80° (26 mm).

<u>1-Furyl-2-trimethylsilylethanol-1</u>. An ether solution of trimethylsilylmethyl magnesium chloride, prepared from 8 g (0.33 g-at) magnesium, and 40.8 g (0.33 mole) of chloromethyltrimethylsilane is cooled to 0°, and a solution of 32.0 g (0.33 mole) freshly distilled furfural in 50 ml dry ether is added dropwise. Next day the reaction mixture is decomposed with water. The ether layer plus ethereal extracts is washed with 50 ml 20% sodium bisulfite and dried over potash. The solvent is distilled off, and the residue distilled in a vacuum. Yield 32.4 g (53.3%), b.p. 75-76°(1 mm).

## REFERENCES

- 1. E. Lukevits, Izv. AN Latv. SSR, ser khim., p. 111, 1963.
- 2. R. Benkeser, R. Curie, J. Am. Chem. Soc., vol. 70, p. 1780, 1948.
- 3. C. Eaborn, J. A. Sperry, J. Chem. Soc., p. 4921, 1961.
- 4. R. Benkeser, H. Landesman, J. Am. Chem. Soc., vol. 71, p. 2493, 1949.
- 5. L. Sommer, R. Pioch, J. Am. Chem. Soc., vol. 76, p. 1606, 1954.
- 6. E. Lukevits, S. Giller, Izv. AN Latv. SSR, no. 4, p. 99, 1961.
- 7. H. Gilman, D. Miles, J. Org. Chem., vol. 23, p. 326, 1958.
- 8. E. Lukevits, S. Giller, Izv. AN Latv. SSR, no. 4, p. 95, 1961.
- 9. E. Lukevits, M. G. Voronkov, Izv. AN Latv. SSR, ser. khim., p. 127, 1961.
- 10. E. Lukevits, Yu. P. Romadan, S. A. Giller, M. G. Voronkov, DAN, vol. 145, p. 806, 1962.

11. A. D. Petrov, V. F. Mironov, V. A. Ponomarenko, E. A. Cherhyshev, Synthesis of Organosilicon Monomers [in Russian], Moscow, p. 424, 1961.

12. H. Gilman, J. Swiss, J. Am. Chem. Soc., vol. 62, p. 1847, 1940.

20 July 1964

Institute of Organic Synthesis AS Latvian SSR, Riga